skip to main content


Search for: All records

Creators/Authors contains: "Harper, S. E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We summarize the second radio synchrotron background workshop, which took place on 2022 June 15–17 in Barolo, Italy. This meeting was convened because available measurements of the diffuse radio zero level continue to suggest that it is several times higher than can be attributed to known Galactic and extragalactic sources and processes, rendering it the least well-understood electromagnetic background at present and a major outstanding question in astrophysics. The workshop agreed on the next priorities for investigations of this phenomenon, which include searching for evidence of the radio Sunyaev–Zel’dovich effect, carrying out cross-correlation analyses of radio emission with other tracers, and supporting the completion of the 310 MHz absolutely calibrated sky map project.

     
    more » « less
  2. ABSTRACT

    The C-Band All-Sky Survey (C-BASS) has observed the Galaxy at 4.76 GHz with an angular resolution of 0${_{.}^{\circ}}$73 full-width half-maximum, and detected Galactic synchrotron emission with high signal-to-noise ratio over the entire northern sky (δ > −15○). We present the results of a spatial correlation analysis of Galactic foregrounds at mid-to-high (b > 10○) Galactic latitudes using a preliminary version of the C-BASS intensity map. We jointly fit for synchrotron, dust, and free–free components between 20 and 1000 GHz and look for differences in the Galactic synchrotron spectrum, and the emissivity of anomalous microwave emission (AME) when using either the C-BASS map or the 408-MHz all-sky map to trace synchrotron emission. We find marginal evidence for a steepening (<Δβ> = −0.06 ± 0.02) of the Galactic synchrotron spectrum at high frequencies resulting in a mean spectral index of <β> = −3.10 ± 0.02 over 4.76–22.8 GHz. Further, we find that the synchrotron emission can be well modelled by a single power law up to a few tens of GHz. Due to this, we find that the AME emissivity is not sensitive to changing the synchrotron tracer from the 408-MHz map to the 4.76-GHz map. We interpret this as strong evidence for the origin of AME being spinning dust emission.

     
    more » « less